The Structure of Z_2[u]Z_2[u, v]-additive Codes
نویسندگان
چکیده
In this paper, we study the algebraic structure of Z2[u]Z2[u, v]-additive codes which are Z2[u, v]-submodules where u 2 = v2 = 0 and uv = vu. In particular, we determine a Gray map from Z2[u]Z2[u, v] to Z 2α+8β 2 and study generator and parity check matrices for these codes. Further we study the structure of Z2[u]Z2[u, v]additive cyclic codes and constacyclic codes.
منابع مشابه
Z2Z4-linear codes: generator matrices and duality
A code ${\cal C}$ is $\Z_2\Z_4$-additive if the set of coordinates can be partitioned into two subsets $X$ and $Y$ such that the punctured code of ${\cal C}$ by deleting the coordinates outside $X$ (respectively, $Y$) is a binary linear code (respectively, a quaternary linear code). In this paper $\Z_2\Z_4$-additive codes are studied. Their corresponding binary images, via the Gray map, are $\Z...
متن کاملAsymptotic bounds of depth for the reversible circuit consisting of NOT, CNOT and 2-CNOT gates
The paper discusses the asymptotic depth of a reversible circuit consisting of NOT, CNOT and 2-CNOT gates. Reversible circuit depth function $D(n, q)$ for a circuit implementing a transformation $f\colon \mathbb Z_2^n \to \mathbb Z_2^n$ is introduced as a function of $n$ and the number of additional inputs $q$. It is proved that for the case of implementing a permutation from $A(\mathbb Z_2^n)$...
متن کاملOn the irreducibility of the complex specialization of the representation of the Hecke algebra of the complex reflection group $G_7$
We consider a 2-dimensional representation of the Hecke algebra $H(G_7, u)$, where $G_7$ is the complex reflection group and $u$ is the set of indeterminates $u = (x_1,x_2,y_1,y_2,y_3,z_1,z_2,z_3)$. After specializing the indetrminates to non zero complex numbers, we then determine a necessary and sufficient condition that guarantees the irreducibility of the complex specialization of the repre...
متن کاملOn the Kernel of \mathbb Z_2^s -Linear Hadamard Codes
The Z2s -additive codes are subgroups of Z n 2s , and can be seen as a generalization of linear codes over Z2 and Z4. A Z2s -linear Hadamard code is a binary Hadamard code which is the Gray map image of a Z2s additive code. It is known that the dimension of the kernel can be used to give a complete classification of the Z4-linear Hadamard codes. In this paper, the kernel of Z2s -linear Hadamard...
متن کاملOn generalized left (alpha, beta)-derivations in rings
Let $R$ be a 2-torsion free ring and $U$ be a square closed Lie ideal of $R$. Suppose that $alpha, beta$ are automorphisms of $R$. An additive mapping $delta: R longrightarrow R$ is said to be a Jordan left $(alpha,beta)$-derivation of $R$ if $delta(x^2)=alpha(x)delta(x)+beta(x)delta(x)$ holds for all $xin R$. In this paper it is established that if $R$ admits an additive mapping $G : Rlongrigh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1601.04859 شماره
صفحات -
تاریخ انتشار 2016